Calibration-free whole-brain CEST imaging at 7T with parallel transmit pulse design for saturation homogeneity utilizing universal pulses (PUSHUP)

Magn Reson Med. 2025 Feb;93(2):630-642. doi: 10.1002/mrm.30305. Epub 2024 Sep 20.

Abstract

Purpose: Chemical exchange saturation transfer (CEST) measurements at ultra-high field (UHF) suffer from strong saturation inhomogeneity. Retrospective correction of this inhomogeneity is possible to some extent, but requires a time-consuming repetition of the measurement. Here, we propose a calibration-free parallel transmit (pTx)-based saturation scheme that homogenizes the saturation over the imaging volume, which we call PUlse design for Saturation Homogeneity utilizing Universal Pulses (PUSHUP).

Theory: Magnetization transfer effects depend on the saturation B 1 rms $$ {\mathrm{B}}_1^{\mathrm{rms}} $$ . PUSHUP homogenizes the saturation B 1 rms $$ {\mathrm{B}}_1^{\mathrm{rms}} $$ by using multiple saturation pulses with alternating B 1 $$ {\mathrm{B}}_1 $$ -shims. Using a database of B 1 $$ {\mathrm{B}}_1 $$ maps, universal pulses are calculated that remove the necessity of time-consuming, subject-based pulse calculation during the measurement.

Methods: PUSHUP was combined with a whole-brain three-dimensional-echo planar imaging (3D-EPI) readout. Two PUSHUP saturation modules were calculated by either applying whole-brain or cerebellum masks to the database maps. The saturation homogeneity and the group mean CEST amplitudes were calculated for different B 1 $$ {\mathrm{B}}_1 $$ -correction methods and were compared to circular polarized (CP) saturation in five healthy volunteers using an eight-channel transmit coil at 7 Tesla.

Results: In contrast to CP saturation, where accurate CEST maps were impossible to obtain in the cerebellum, even with extensive B 1 $$ {\mathrm{B}}_1 $$ -correction, PUSHUP CEST maps were artifact-free throughout the whole brain. A 1-point retrospective B 1 $$ {\mathrm{B}}_1 $$ -correction, that does not need repeated measurements, sufficiently removed the effect of residual saturation inhomogeneity.

Conclusion: The presented method allows for homogeneous whole-brain CEST imaging at 7 Tesla without the need of a repetition-based B 1 $$ {\mathrm{B}}_1 $$ -correction or online pulse calculation. With the fast 3D-EPI readout, whole-brain CEST imaging with 45 saturation offsets is possible at 1.6 mm resolution in under 4 min.

Keywords: CEST; magnetization transfer; parallel transmit; ultra‐high field; universal pulses.

MeSH terms

  • Adult
  • Algorithms*
  • Brain* / diagnostic imaging
  • Calibration
  • Female
  • Humans
  • Image Processing, Computer-Assisted* / methods
  • Magnetic Resonance Imaging* / methods
  • Male
  • Phantoms, Imaging*