Spatio-temporal patterns of dengue in Bangladesh during 2019 to 2023: Implications for targeted control strategies

PLoS Negl Trop Dis. 2024 Sep 20;18(9):e0012503. doi: 10.1371/journal.pntd.0012503. eCollection 2024 Sep.

Abstract

Background: Dengue, a viral infection transmitted by Aedes species mosquitoes, presents a substantial global public health concern, particularly in tropical regions. In Bangladesh, where dengue prevalence is noteworthy, accurately mapping the distribution of high-risk and low-risk areas and comprehending the clustering of dengue cases throughout the year is essential for the development of effective risk-based prevention and control strategies. Our objective was to identify dengue hotspots and temporal patterns over the years across Bangladesh in the years 2019-2023 excluding year 2020.

Methods: A sequential spatial analysis was employed for each year to identify high-risk areas for dengue cases. Choropleth graphs were used to visualize the geographic distribution of dengue incidence rates per million population across the areas. Monthly distribution analysis was performed to identify temporal trends over the year 2022 and 2023. Additionally, the global Moran's I test was used to assess the overall geographical pattern. Subsequently, Anselin local Moran's I test was employed to identified clustering and hotspots of dengue incidences.

Results: Dengue cases in Bangladesh exhibited a significant increase from 2019 to 2023 (excluding 2020 data), with a cumulative total of 513,344 reported cases. Dhaka city initially bore substantial burden, accounting for over half (51%) of the 101,354 cases in 2019. The case fatality rate also demonstrated a steadily rise, reaching 0.5% in 2023 with 321,179 cases (a five-fold increase compare to 2022). Interestingly, the proportion of cases in Dhaka city decreased from 51% in 2019 to 34% in 2023. Notably, the southeast and central regions of Bangladesh showed the highest dengue rates, persisting throughout the study period. Cases were concentrated in urban regions, with Dhaka exhibiting the highest caseload in most years, followed by Manikganj in 2023. A distinct temporal shift in dengue transmission was observed in 2023, when the peak incidence occurred three months earlier in July with complete geographic coverage (all the 64 districts) compared to the peak in October 2022 (covering 95%, 61 districts). Positive global autocorrelation analysis revealed spatial dependence, with more stable trends in 2023 compared to previous years. Several districts like, Bagerhat, Barisal, and Faridpur remained persistent hotspots or emerged as new hotspots in 2023. Conversely, districts like Dinajpur, Gaibandha, Nilphamari, Rangpur and Sylhet consistently exhibited low caseloads, categorized as dengue coldspots throughout most of the years. Jhalokati in 2019 and Gopalganj in 2022, both initially classified as low-incidence district surrounded by high-incidence districts, emerged as hotspots in 2023.

Conclusion: This study sheds light on the spatiotemporal dynamics of dengue transmission in Bangladesh, particularly by identifying hotspots and clustering patterns. These insights offer valuable information for designing and implementing targeted public health interventions and control strategies. Furthermore, the observed trends highlight the need for adaptable strategies to address the region's evolving nature of dengue transmission effectively.

MeSH terms

  • Aedes / virology
  • Animals
  • Bangladesh / epidemiology
  • Dengue* / epidemiology
  • Dengue* / transmission
  • Humans
  • Incidence
  • Spatio-Temporal Analysis*

Grants and funding

The author(s) received no specific funding for this work.