Snowmelt duration controls red algal blooms in the snow of the European Alps

Proc Natl Acad Sci U S A. 2024 Oct 8;121(41):e2400362121. doi: 10.1073/pnas.2400362121. Epub 2024 Sep 23.

Abstract

Algae populate multiple habitats, including snow and ice, where they can form red blooms. These decrease snow albedo, accelerating snowmelt and potentially feeding back on snow and glacier decline caused by climate change. Quantifying this feedback requires the understanding of bloom evolution with climate change. Little, however, is known about the drivers of red snow blooms. Here, we develop an algorithm to analyze 5 y of satellite data from the European Alps and separate bloom occurrences from similarly colored Saharan dust depositions. In a second step, we combine the occurrences of blooms with meteorological data and snow simulations to identify the drivers of blooms. Results show that the upward migration of algae from the ground and blooming requires the presence of liquid water throughout the whole snow column for at least 46 d. Our limited data suggest that moderate dust amounts provide nutrients favorable to bloom, whereas large dust amounts hasten snowmelt and reduce its duration below the threshold required for blooming. Over the period studied, blooms cover 1.3% of the area above 1,800 m elevation, advancing the snow melt-out date by 4 to 21 d in these areas. Under warmer climates, maximum snow mass will decrease whereas snowmelt duration, that controls algal blooms' occurrences, is less sensitive to global temperature increase. In this respect, the impact of bloom on snowmelt will either remain stable (RCP4.5) or decrease (RCP8.5). Algal blooms in the Alps therefore do not constitute a positive climate feedback.

Keywords: Alps; algae; climate change; melt; snow.

MeSH terms

  • Climate Change*
  • Dust / analysis
  • Ecosystem
  • Europe
  • Eutrophication*
  • Ice Cover
  • Rhodophyta / growth & development
  • Seasons
  • Snow*

Substances

  • Dust