We report the structure and properties of a new Ce-based compound Ce3TiAs5synthesized under high-pressure and high-temperature conditions. It crystallizes in a hexagonal Hf5Sn3Cu-anti type structure with zig-zag like Ce chains along thecaxis. This compound is metallic and undergoes a magnetic phase transition atTN= 13 K. A metamagnetic transition occurs at ∼0.7 T. The Sommerfeld coefficient for the compound is determined to be about 215 mJ/(Ce-mol*K2), demonstrating a heavy Fermion behavior. The resistivity is featured with two humps, which arises from the synergistic effect of crystal electric field and magnetic scattering. The magnetic ordering temperatureTNgradually increases in the sequence of Ce3TiPn5with Pn = Bi, Sb, and As, which implies that the Ruderman-Kittel-Kasuya-Yosida interaction should be still predominant in Ce3TiAs5.
Keywords: Kondo effect; heavy fermion; magnetism; quasi 1D structure.
© 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.