Continuous quality improvement with a two-step strategy effective for mass SARS-CoV-2 screening at the Tokyo 2020 Olympic and Paralympic Games

PLoS One. 2024 Sep 26;19(9):e0304747. doi: 10.1371/journal.pone.0304747. eCollection 2024.

Abstract

The Tokyo 2020 Olympic and Paralympic Games (Games) were held during the height of the coronavirus disease 2019 (COVID-19) pandemic. To detect people infected with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) early enough to contain the spread and to facilitate the timely arrival of athletes at their game venues, all participating athletes staying in the Olympic Village (up to 14,000) were screened daily for the infection. Toward this aim, a two-step strategy was adopted comprising screening of self-collected saliva samples using a chemiluminescence enzyme immunoassay, followed by confirmatory testing using polymerase chain reaction. The testing system was integrated with an information management system covering all steps. To ensure the accuracy of the test results, rigorous quality assurance measures and monitoring of performance/specimen quality were implemented. A chronological chart analysis was implemented to monitor the holistic process and to give feedback to improve the sampling. Nearly all test results for 418,506 saliva samples were reported within 12 hours of sample collection, achieving the target mean turnaround time of 150 minutes for confirmatory testing. As a result, athlete activity and performance for the Games were ensured. The chronological chart confirmed that no athletes were withdrawn due to a false-positive result, and no infection clusters were identified among the athletes in the Olympic Village. In conclusion, continuous quality improvement as part of the two-step strategy for mass screening for COVID-19 contributed to the success of the Games during the pandemic. The quality practice, systems, and workflows described here may offer a model for future mass-gathering sporting events during similar major infectious disease epidemics.

MeSH terms

  • Athletes
  • COVID-19 Testing / methods
  • COVID-19* / diagnosis
  • COVID-19* / epidemiology
  • COVID-19* / virology
  • Humans
  • Mass Screening* / methods
  • Pandemics
  • Quality Improvement*
  • SARS-CoV-2* / isolation & purification
  • Saliva* / virology
  • Sports
  • Tokyo / epidemiology

Grants and funding

The author(s) received no specific funding for this work.