The Asiatic garden beetle, Maladera formosae Brenske (AGB), has become a significant pest of commercial mint fields in northern Indiana. Larval feeding on mint roots can cause stunted growth and plant death when densities are high. Sampling approaches that provide reliable estimates of larval densities in mint have not been established, leaving farmers without the knowledge necessary to implement integrated pest management (IPM) strategies. To address this knowledge gap, we evaluated strategies for estimating AGB larval densities and plant performance in commercial mint systems. We used 2 sampling methods to collect larval density and plant performance data from 3 mint fields and conducted simulations to optimize sampling intensity (accuracy and precision) and sampling scheme (random vs. systematic) using these data. Additionally, we examined the sensitivity and efficiency of each sampling method. Compared to the cup-cutter method, the quadrat method provided the most accurate and precise estimates of larval density and plant performance, with ≤ 7 samples required per 0.2 ha. Quadrat excavation was also more sensitive, increasing the probability of detecting AGB larvae within a 32 m2 plot by 76.7%, and requiring significantly less time to survey an equivalent volume of soil for AGB larvae. When the quadrat method was employed, random sampling schemes provided below-ground biomass estimates that were significantly closer to the true mean of the sampling area. The results of this research will facilitate the development of IPM decision-making tools for farmers and support future research for AGB and other soil insect pests affecting mint production.
Keywords: data simulation; sampling intensity; sampling scheme; sensitivity; soil insect.
© The Author(s) 2024. Published by Oxford University Press on behalf of Entomological Society of America.