Hydride shuttle catalysis has emerged as a powerful synthetic platform, enabling the selective formation of C-C bonds to yield sp3-rich structures. By virtue of the compelling reactivity of sterically encumbered Lewis acids from the frustrated Lewis pair regime, hydride shuttle catalysis enables the regioselective functionalization of alkyl amines at either the α- or β-position. In contrast to classical Lewis acid reactivity, the increased steric hindrance prevents interaction with the Lewis basic amine itself, instead leading to reversible abstraction of a hydride from the amine α-carbon. The created positive charge facilitates the occurrence of transformations before hydride rebound or a similar capture event happen. In this Perspective, we outline a broad selection of transformations featuring hydride shuttle catalysis, as well as the recently developed approach of inverse hydride shuttle catalysis. Both strategies give rise to a wide array of functionalized amines and offer elegant approaches to otherwise elusive bond formations.
© 2024 The Authors. Published by American Chemical Society.