Age-Related Differences in Prestimulus EEG Affect ERPs and Behaviour in the Equiprobable Go/NoGo Task

Brain Sci. 2024 Aug 28;14(9):868. doi: 10.3390/brainsci14090868.

Abstract

Detailed studies of the equiprobable auditory Go/NoGo task have allowed for the development of a sequential-processing model of the perceptual and cognitive processes involved. These processes are reflected in various components differentiating the Go and NoGo event-related potentials (ERPs). It has long been established that electroencephalography (EEG) changes through normal lifespan development. It is also known that ERPs and behaviour in the equiprobable auditory Go/NoGo task change from children to young adults, and again in older adults. Here, we provide a novel examination of links between in-task prestimulus EEG, poststimulus ERPs, and behaviour in three gender-matched groups: children (8-12 years), young adults (18-24 years), and older adults (59-74 years). We used a frequency Principal Component Analysis (f-PCA) to estimate prestimulus EEG components and a temporal Principal Component Analysis (t-PCA) to separately estimate poststimulus ERP Go and NoGo components in each age group to avoid misallocation of variance. The links between EEG components, ERP components, and behavioural measures differed markedly between the groups. The young adults performed best and accomplished this with the simplest EEG-ERP-behaviour brain dynamics pattern. The children performed worst, and this was reflected in the most complex brain dynamics pattern. The older adults showed some reduction in performance, reflected in an EEG-ERP-behaviour pattern with intermediate complexity between those of the children and young adults. These novel brain dynamics patterns hold promise for future developmental research.

Keywords: behaviour; developmental brain dynamics; poststimulus ERP components; prestimulus EEG components; temporal and frequency PCA.

Grants and funding

This research received no external funding.