The objective of this study was to explore how watermelon rinds (WMRs) and their derivatives, specifically water-soluble polysaccharides (WMRPs) and hemicellulose (WMRH), as sources of dietary fiber, could enhance the quality of wheat bread. The extraction process yielded 34.4% for WMRP and 8.22% for WMRH. WMR, WMRP, and WMRH exhibited promising functional characteristics and were incorporated separately into wheat flour with low bread-making quality (FLBM) at varying proportions (0.5%, 1%, and 1.5% (w/w)). The volume, texture, and crust and crumb color underwent evaluation and were compared to the control. The findings indicated that incorporating WMR notably enhanced the alveograph profile of the dough, demonstrating a more effective impact than the addition of WMRP and WMRH. Adding WMR, WMRP, and WMRH at a 1% concentration to low-quality wheat flour for bread making increased the deformation work values by 16%, 15%, and 13%, respectively, and raised the P/L ratios by 42%, 36%, and 38%, respectively. Additionally, the assessment of the bread highlighted a substantial enhancement in both volume and texture profile when WMR was added, in contrast to the control bread (made with FLBM). These findings underscore that incorporating 1% WMR into FLBM was the most effective means of improving bread quality based on the results of this study.
Keywords: alveograph analysis; bread formulation; bread quality; hemicellulose; water-soluble polysaccharides; watermelon rinds.