Abnormal cytoplasmic aggregates containing the TDP-43 protein and its fragments are present in the central nervous system of the majority of patients with amyotrophic lateral sclerosis (ALS) and in patients with frontotemporal lobar degeneration (FTLD). Many studies have focused on the C-terminal cleavage products of TDP-43 (CTFs), but few have focused on the N-terminal products (NTFs), yet several works and their protein domain composition support the involvement of NTFs in pathophysiology. In the present study, we expressed six NTFs of TDP-43, normally generated in vivo by proteases or following the presence of pathogenic genetic truncating variants, in HEK-293T cells. The N-terminal domain (NTD) alone was not sufficient to produce aggregates. Fragments containing the NTD and all or part of the RRM1 domain produced nuclear aggregates without affecting cell viability. Only large fragments also containing the RRM2 domain, with or without the glycine-rich domain, produced cytoplasmic aggregates. Of these, only NTFs containing even a very short portion of the glycine-rich domain caused a reduction in cell viability. Our results provide insights into the involvement of different TDP-43 domains in the formation of nuclear or cytoplasmic aggregates and support the idea that work on the development of therapeutic molecules targeting TDP-43 must also take into account NTFs and, in particular, those containing even a small part of the glycine-rich domain.
Keywords: ALS; FTDL; TARDBP; post-translational modifications; protein aggregation.