Structural and Magnetic Properties of Dimeric Capsule Assemblies Formed by Cyclic Trinuclear Complexes

Molecules. 2024 Sep 11;29(18):4307. doi: 10.3390/molecules29184307.

Abstract

Cyclic trinuclear homo-metal complexes, [{Fe(L3+2Br)py}3] (1) and [{Mn(L3+2Br)}3(py)2 MeOH] (2), along with a hetero-metal complex, [FeMn2(L3+2H)3(DMF)3] (3), were synthesized using asymmetric ditopic ligands (H3L3+2H: 2-(2-hydroxyphenyl)-6-ol-5-(salicylideneamino)benzoxazole, H3L3+2Br: 2-(2-hydrox-5-bromoyphenyl)-6-ol-5-(5-bromosalicylideneamino)benzoxazole). The molecular structure of 1 is characterized by a tripod structure with three-fold symmetry, where an enantiomer pair forms a dimeric capsule with dimensions of approximately 3 × 1.6 × 1.6 nm3. Complexes 2 and 3, which lack three-fold symmetry, exhibit similar molecular structures to previously reported complexes with these ligands, but do not form a capsule structure. Magnetic measurements of 1-3 reveal the presence of significantly weak antiferromagnetic interactions between the metal ions.

Keywords: X-ray structures; dimeric capsule; ditopic ligand; iron(III); magnetic susceptibility; manganese(III); trinuclear complex.