Prediction of a novel two-dimensional superatomic Cd6S2 monolayer for photocatalytic water splitting

J Chem Phys. 2024 Oct 7;161(13):134704. doi: 10.1063/5.0222309.

Abstract

Two-dimensional transition metal dichalcogenides possess a significant specific surface area, adjustable bandgaps, and excellent optical absorption properties, rendering them highly conducive to photocatalytic applications. Herein, a MoS2-like 2D superatomic Cd6S2 monolayer is predicted, wherein the octahedral Cd6 superatom unit connects with S atoms via six vertices. Chemical bonding analysis reveals that the remarkable dynamic, thermal, and mechanical stability of the Cd6S2 monolayer results from the covalent Cd-S bonds and the 6-center 8-electron (6c-8e) delocalized bond within the Cd6 core, which ensures the chemical octet rule for both the S atom and the Cd6 superatom. Demonstrating notable optical absorption coefficients and a strain-tuned energy band structure, the Cd6S2 monolayer emerges as a viable candidate for catalyzing the solar-powered splitting of water. This work offers an alternative avenue to modify or improve the properties of 2D materials for photocatalytic applications through superatomic assembly.