Synergistic effects of thermally reduced graphene oxide/zinc oxide composite material on microbial infection for wound healing applications

Sci Rep. 2024 Oct 3;14(1):22942. doi: 10.1038/s41598-024-73007-5.

Abstract

Infections originating from pathogenic microorganisms can significantly impede the natural wound-healing process. To address this obstacle, innovative bio-active nanomaterials have been developed to enhance antibacterial capabilities. This study focuses on the preparation of nanocomposites from thermally reduced graphene oxide and zinc oxide (TRGO/ZnO). The hydrothermal method was employed to synthesize these nanocomposites, and their physicochemical properties were comprehensively characterized using X-ray diffraction analysis (XRD), High-resolution transmission electron microscopy (HR-TEM), Fourier-transform infrared (FT-IR), Raman spectroscopy, UV-vis, and field-emission scanning electron microscopy (FE-SEM) techniques. Subsequently, the potential of TRGO/ZnO nanocomposites as bio-active materials against wound infection-causing bacteria, including Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli, was evaluated. Furthermore, the investigated samples show disrupted bacterial biofilm formation. A reactive oxygen species (ROS) assay was conducted to investigate the mechanism of nanocomposite inhibition against bacteria and for further in-vivo determination of antimicrobial activity. The MTT assay was performed to ensure the safety and biocompatibility of nanocomposite. The results suggest that TRGO/ZnO nanocomposites have the potential to serve as effective bio-active nanomaterials for combating pathogenic microorganisms present in wounds.

Keywords: Antibacterial activity; Characterizations; Hydrothermal synthesis; Optical properties; Pathogenic microorganism; TRGO/ZnO nanocomposites.

MeSH terms

  • Animals
  • Anti-Bacterial Agents* / chemistry
  • Anti-Bacterial Agents* / pharmacology
  • Biofilms / drug effects
  • Escherichia coli / drug effects
  • Graphite* / chemistry
  • Graphite* / pharmacology
  • Humans
  • Microbial Sensitivity Tests
  • Nanocomposites* / chemistry
  • Pseudomonas aeruginosa / drug effects
  • Reactive Oxygen Species / metabolism
  • Spectroscopy, Fourier Transform Infrared
  • Staphylococcus aureus / drug effects
  • Wound Healing* / drug effects
  • Wound Infection / drug therapy
  • Wound Infection / microbiology
  • X-Ray Diffraction
  • Zinc Oxide* / chemistry
  • Zinc Oxide* / pharmacology

Substances

  • Graphite
  • Zinc Oxide
  • graphene oxide
  • Anti-Bacterial Agents
  • Reactive Oxygen Species