The role of PINK1-Parkin in mitochondrial quality control

Nat Cell Biol. 2024 Oct;26(10):1639-1651. doi: 10.1038/s41556-024-01513-9. Epub 2024 Oct 2.

Abstract

Mitophagy mediated by the recessive Parkinson's disease genes PINK1 and Parkin responds to mitochondrial damage to preserve mitochondrial function. In the pathway, PINK1 is the damage sensor, probing the integrity of the mitochondrial import pathway, and activating Parkin when import is blocked. Parkin is the effector, selectively marking damaged mitochondria with ubiquitin for mitophagy and other quality-control processes. This selective mitochondrial quality-control pathway may be especially critical for dopamine neurons affected in Parkinson's disease, in which the mitochondrial network is widely distributed throughout a highly branched axonal arbor. Here we review the current understanding of the role of PINK1-Parkin in the quality control of mitophagy, including sensing of mitochondrial distress by PINK1, activation of Parkin by PINK1 to induce mitophagy, and the physiological relevance of the PINK1-Parkin pathway.

Publication types

  • Review

MeSH terms

  • Animals
  • Humans
  • Mitochondria* / genetics
  • Mitochondria* / metabolism
  • Mitophagy*
  • Parkinson Disease* / genetics
  • Parkinson Disease* / metabolism
  • Parkinson Disease* / pathology
  • Protein Kinases* / genetics
  • Protein Kinases* / metabolism
  • Signal Transduction
  • Ubiquitin-Protein Ligases* / genetics
  • Ubiquitin-Protein Ligases* / metabolism

Substances

  • Ubiquitin-Protein Ligases
  • parkin protein
  • PTEN-induced putative kinase
  • Protein Kinases