High-yielding traits can potentially improve yield performance under climate change. However, data for these traits are limited to specific field sites. Despite this limitation, field-scale calibrated crop models for high-yielding traits are being applied over large scales using gridded weather and soil datasets. This study investigates the implications of this practice. The SIMPLACE modeling platform was applied using field, 1 km, 25 km, and 50 km input data resolution and sources, with 1881 combinations of three traits [radiation use efficiency (RUE), light extinction coefficient (K), and fruiting efficiency (FE)] for the period 2001-2010 across Germany. Simulations at the grid level were aggregated to the administrative units, enabling the quantification of the aggregation effect. The simulated yield increased by between 1.4 and 3.1 t ha- 1 with a maximum RUE trait value, compared to a control cultivar. No significant yield improvement (< 0.4 t ha- 1) was observed with increases in K and FE alone. Utilizing field-scale input data showed the greatest yield improvement per unit increment in RUE. Resolution of water related inputs (soil characteristics and precipitation) had a notably higher impact on simulated yield than of temperature. However, it did not alter the effects of high-yielding traits on yield. Simulated yields were only slightly affected by data aggregation for the different trait combinations. Warm-dry conditions diminished the benefits of high-yielding traits, suggesting that benefits from high-yielding traits depend on environments. The current findings emphasize the critical role of input data resolution and source in quantifying a large-scale impact of high-yielding traits.
© 2024. The Author(s).