The inability to use one's hands or arms greatly restricts the ability to perform daily activities. After a developmental or acquired injury, the intensity and frequency of rehabilitation exercises are essential. To alleviate the burden on the healthcare system, robotic systems have been developed to support clinicians' interventions. However, these systems are often bulky and expensive, limiting their use to specific clinical settings and making them impractical for home use. This paper presents the development of an affordable and easy to install 2-DOF five-bar linkage robot designed to be used at home. This work aims to reduce the cost of the robot through actuation optimization, mechanical optimization and 3D printing. The architecture and links length are chosen to optimize the robot's performance in the required workspace. Using sensor feedback, impedance control algorithms and multiple types of exercise such as virtual walls guidance are implemented. Finally, a user interface was programmed to facilitate the robot's use.
Keywords: Rehabilitation engineering; motor learning; rehabilitation robotics.
© The Author(s) 2024.