Cross-Scale Decoupling Kinetic Processes in Lithium-Ion Batteries Using the Multi-Dimensional Distribution of Relaxation Time

Adv Sci (Weinh). 2024 Nov;11(44):e2406934. doi: 10.1002/advs.202406934. Epub 2024 Oct 8.

Abstract

To non-destructively resolve and diagnose the degradation mechanisms of lithium-ion batteries (LIBs), it is necessary to cross-scale decouple complex kinetic processes through the distribution of relaxation times (DRT). However, LIBs with low interfacial impedance render DRT unreliable without data processing and closed-loop validation. This study proposes a hierarchical analytical framework to enhance timescale resolution and reduce uncertainty, including interfacial impedance reconstruction and multi-dimensional DRT analysis. Interfacial impedance is reconstructed by eliminating simulated inductive and diffusive impedance based on a high-fidelity frequency-domain model. Multi-dimensional DRT decouples solid electrolyte interphase (SEI) and charge transfer (CT) processes by the reversibility of electrochemical reactions with state of charge (SOC) to characterize electrode kinetic evolution driven by SOC and temperature through timescales and peak area. The findings reveal that reconstructed impedance improves the accuracy of identified time constants by ≈20%. Cross-scale DRT results reveal that SOCs below 10% at 25 °C effectively distinguish electrode kinetics due to the high correlation between cathodic CT and SOC. Kinetic metrics characterize that anodic SEI or CT are different control steps limiting the low-temperature performance of different cells. This work underscores the potential of the proposed framework for non-destructive diagnostics of kinetic evolution.

Keywords: cross‐scale identification; distribution of relaxation time; kinetic processes decoupling; lithium‐ion batteries; reconstructed interfacial impedance.