Understanding the structure-property relationship in electrocatalysts under working conditions is crucial for the rational design of novel and improved catalytic materials. This paper presents the Aarhus University reactor for electrochemical studies using X-rays (AUREX) operando electrocatalytic flow cell, designed as an easy-to-use versatile setup with a minimal background contribution and a uniform flow field to limit concentration polarization and handle gas formation. The cell has been employed to measure operando total scattering, diffraction and absorption spectroscopy as well as simultaneous combinations thereof on a commercial silver electrocatalyst for proof of concept. This combination of operando techniques allows for monitoring of the short-, medium- and long-range structure under working conditions, including an applied potential, liquid electrolyte and local reaction environment. The structural transformations of the Ag electrocatalyst are monitored with non-negative matrix factorization, linear combination analysis, the Pearson correlation coefficient matrix, and refinements in both real and reciprocal space. Upon application of an oxidative potential in an Ar-saturated aqueous 0.1 M KHCO3/K2CO3 electrolyte, the face-centered cubic (f.c.c.) Ag gradually transforms first to a trigonal Ag2CO3 phase, followed by the formation of a monoclinic Ag2CO3 phase. A reducing potential immediately reverts the structure to the Ag (f.c.c.) phase. Following the electrochemical-reaction-induced phase transitions is of fundamental interest and necessary for understanding and improving the stability of electrocatalysts, and the operando cell proves a versatile setup for probing this. In addition, it is demonstrated that, when studying electrochemical reactions, a high energy or short exposure time is needed to circumvent beam-induced effects.
Keywords: X-ray absorption spectroscopy; X-ray scattering; cell design; electrocatalysis; operando studies; structure–property relationships.
© Sara Frank et al. 2024.