Methamphetamine (METH) is a drug of abuse, which induces behavioral sensitization following repeated doses. Since METH alters blood pressure, in the present study we assessed whether systolic and diastolic blood pressure (SBP and DBP, respectively) are sensitized as well. In this context, we investigated whether alterations develop within A1/C1 neurons in the vasomotor center. C57Bl/6J male mice were administered METH (5 mg/kg, daily for 5 consecutive days). Blood pressure was measured by tail-cuff plethysmography. We found a sensitized response both to SBP and DBP, along with a significant decrease of catecholamine neurons within A1/C1 (both in the rostral and caudal ventrolateral medulla), while no changes were detected in glutamic acid decarboxylase. The decrease of catecholamine neurons was neither associated with the appearance of degeneration-related marker Fluoro-Jade B nor with altered expression of α-synuclein. Rather, it was associated with reduced free radicals and phospho-cJun and increased heat shock protein-70 and p62/sequestosome within A1/C1 cells. Blood pressure sensitization was not associated with altered arterial reactivity. These data indicate that reiterated METH administration may increase blood pressure persistently and may predispose to an increased cardiovascular response to METH. These data may be relevant to explain cardiovascular events following METH administration and stressful conditions.
Keywords: GAD; HSP70; blood pressure; catecholamines; free radicals; methamphetamine sensitization; p62; phospho-cJun; vascular reactivity; ventrolateral medulla; α-synuclein.