Modeling High Concentration Bisalt-in-Sulfolane Electrolytes and the Observation of Ligand-Bridged Cation-Pair Complexes

J Phys Chem B. 2024 Oct 31;128(43):10675-10687. doi: 10.1021/acs.jpcb.4c04644. Epub 2024 Oct 16.

Abstract

Despite the abundance of sodium over lithium in Earth's crust and the copious amounts of expensive lithium salt required to make Li-ion high-concentration electrolytes (HCEs), studies of HCEs made from sodium salts remain sparse. A comparative molecular-level study of Li- and Na-ion HCEs and mixed cation or bisalt HCEs in an organic solvent is missing. To fill this gap, we studied model HCEs of pure and mixed Li and Na salts of bis(fluorosulfonyl)amide (FSI) in sulfolane using a confluence of classical molecular dynamics (MD), ab initio MD (AIMD) simulations, and quantum chemical cluster calculations. While Li-ion HCEs display transport properties superior to those of Na-ion HCEs, the latter's performance can be considerably improved by replacing even 25% of Na-ions with Li-ions. While the effects of doping are largely systemic, a larger sensitivity of the identity of solvation shells of Li-ions to the Li-content of the HCE is observed; in contrast, those of Na-ions are more oblivious to it. Fascinating ligand-bridged, short-distance cation pairs observed in the classical MD simulations are confirmed using density functional theory-based AIMD simulations. Quantum chemical calculations in the gas phase reveal the thermodynamic stability of such cation pairs complexed with multiple anions and solvent molecules.