Thalamic Roles in Conscious Perception Revealed by Low-Intensity Focused Ultrasound Neuromodulation

bioRxiv [Preprint]. 2024 Oct 10:2024.10.07.617034. doi: 10.1101/2024.10.07.617034.

Abstract

The neural basis of conscious perception remains incompletely understood. While cortical mechanisms of conscious content have been extensively investigated, the role of subcortical structures, including the thalamus, remains less explored. We aim to elucidate the causal contributions of different thalamic regions to conscious perception using transcranial low-intensity focused ultrasound (LIFU) neuromodulation. We hypothesize that modulating different thalamic regions would result in distinct perceptual outcomes. We apply LIFU in human volunteers to investigate region-specific and sonication parameter-dependent effects. We target anterior (transmodal-dominant) and posterior (unimodal-dominant) thalamic regions, further divided into ventral and dorsal regions, while participants perform a near-threshold visual perception task. Task performance is evaluated using Signal Detection Theory metrics. We find that the high duty cycle stimulation of the ventral anterior thalamus enhanced object recognition sensitivity. We also observe a general (i.e., region-independent) effect of LIFU on decision bias (i.e., a tendency toward a particular response) and object categorization accuracy. Specifically, high duty cycle stimulation decreases categorization accuracy, whereas low duty cycle shifts decision bias towards a more conservative stance. In conclusion, our results provide causal insight into the functional organization of the thalamus in shaping human visual experience and highlight the unique role of the transmodal-dominant ventral anterior thalamus.

Publication types

  • Preprint