Electric Field Mediated Unclogging of Angstrom-Scale Channels

Small Methods. 2024 Oct 17:e2400961. doi: 10.1002/smtd.202400961. Online ahead of print.

Abstract

Angstrom-scale fluidic channels offer immense potential for applications in areas such as desalination, molecular sieving, biomolecular sequencing, and dialysis. Inspired by biological ion channels, nano- and angstrom (Å)-scale channels are fabricated that mimic these molecular or atomic-scale dimensions. At the Å-scale, these channels exhibit unique phenomena, including selective ion transport, osmotic energy generation, fast water and gas flows, and neuromorphic ion memory. However, practical utilization of Å-scale channels is often hindered by contamination, which can clog these nanochannels. In this context, a promising technique is introduced here for unclogging 2D channels, particularly those with sub-nanometre dimensions (≈6.8 Å). The voltage-cycling method emerges as an efficient and reliable solution for this challenge. The electric field effectively dislodges contaminants from the clogged Å-scale channels, facilitating ion and molecular transport. This study provides practical guidelines for reviving clogged nano- and Å-scale channels, thereby enhancing their applicability in various ion and molecular transport applications.

Keywords: 2D capillaries; 2D materials; angstrofluidics; ionic conductivity; molecular transport; nanofluidics; van der Waals assembly.