Effects of fMRI neurofeedback of right inferior frontal cortex on inhibitory brain activation in children with ADHD

Philos Trans R Soc Lond B Biol Sci. 2024 Dec 2;379(1915):20230097. doi: 10.1098/rstb.2023.0097. Epub 2024 Oct 21.

Abstract

We aimed to replicate previous effects of functional magnetic resonance imaging neurofeedback (fMRI-NF) in right inferior frontal cortex (rIFC) on IFC activation during a Stop Task in a larger group of boys with attention-deficit/hyperactivity disorder (ADHD). The present double-blind, randomized controlled trial tested the effects of 15 runs of active versus sham fMRI-NF of rIFC on performance and activation associated with successful and failed inhibition versus Go trials during a tracking Stop task in 88 boys with ADHD (44 active; 44 sham), controlling for age and medication status. No significant group-by-time interaction effects were observed for performance or brain activation during the successful stop trials, and post hoc analysis showed very low numbers of active fMRI-NF learners. Nevertheless, during error monitoring, there was a significant group-by-time interaction effect on post-error reaction time slowing and in left IFC activation, which were both increased after active compared to sham fMRI-NF. The findings are in line with our previous observation of left IFC upregulation after fMRI-NF of rIFC relative to active fMRI-NF of parahippocampal gyrus. This highlights the potentially wider regional effects that fMRI-NF of a particular self-control target region has on other self-regulatory regions in ADHD. This article is part of the theme issue 'Neurofeedback: new territories and neurocognitive mechanisms of endogenous neuromodulation'.

Keywords: ADHD; children; fMRI neurofeedback; inhibition; stop-signal task.

Publication types

  • Randomized Controlled Trial

MeSH terms

  • Adolescent
  • Attention Deficit Disorder with Hyperactivity* / diagnostic imaging
  • Attention Deficit Disorder with Hyperactivity* / physiopathology
  • Child
  • Double-Blind Method
  • Frontal Lobe / diagnostic imaging
  • Frontal Lobe / physiopathology
  • Humans
  • Magnetic Resonance Imaging*
  • Male
  • Neurofeedback* / methods
  • Prefrontal Cortex / diagnostic imaging
  • Prefrontal Cortex / physiopathology