Linear epitopes of PRRSV-1 envelope proteins ectodomains are not correlated with broad neutralization

Porcine Health Manag. 2024 Oct 21;10(1):44. doi: 10.1186/s40813-024-00393-7.

Abstract

Background: Neutralizing antibodies against PRRSV are capable of conferring protection against viral reinfection, but they tend to be strain specific and usually have poor cross-reactivity. Nonetheless, it has been described that there are individuals capable of efficiently neutralizing viruses of different origin, so it is expected that there are conserved neutralizing epitopes relevant for broad neutralization. However, although immunodominant regions and neutralizing epitopes have been described in different envelope proteins, their role in broad neutralization is unknown. The main objective of this study was to determine whether the linear epitopes existing in the ectodomains of PRRSV envelope proteins play a role in cross-neutralization.

Results: A pepscan analysis was carried out using synthetic peptides against the ectodomains of PRRSV envelope proteins and PRRSV-hyperimmune sera of different cross-reactivity. The results obtained confirm the existence of antigenic regions in the ectodomains of the GP2, GP3, GP4 and GP5 that tend to be relatively conserved among different PRRSV isolates. Nonetheless, these antigenic regions have poor immunogenicity since they are only recognized by a limited number of sera. Furthermore, no differences were found between the reactivity of sera with broad cross-neutralization capacity and sera with poor heterologous neutralization activity, which indicate that linear epitopes existing in the ectodomains of PRRSV envelope proteins are not relevant for the development of broadly reactive neutralizing antibodies. Subsequently, some selected peptides were used in competition assays with the virus for binding to the cell receptors and in seroneutralization inhibition assays by incubation with hyperimmune sera. Firstly, some peptides that interfere with virus infectivity were identified in competition assays, but only in the case of one viral isolate, which points to the possible existence of a strain-dependent inhibition. However, the results of the seroneutralization inhibition assay indicate that, under the conditions of our study, none of the peptides used was capable of inhibiting virus neutralization by the hyperimmune sera.

Conclusions: The results obtained indicate that the linear peptides analyzed in this study do not play a major role in the induction of broadly reactive neutralizing antibodies, which could probably depend on conformational neutralizing.

Keywords: Broadly reactive neutralizing antibodies; Linear neutralizing epitopes; Porcine reproductive and respiratory syndrome virus.