Aim: Whole-exome sequencing (WES) studies have revealed that germline de novo variants (gDNVs) contribute to the genetic etiology of schizophrenia. However, the contribution of mosaic DNVs (mDNVs) to the risk of schizophrenia remains to be elucidated. In the present study, we systematically investigated the gDNVs and mDMVs that contribute to the genetic etiology of schizophrenia in a Japanese population.
Methods: We performed deep WES (depth: 460×) of 73 affected offspring and WES (depth: 116×) of 134 parents from 67 families with schizophrenia. Prioritized rare nonsynonymous gDNV and mDNV candidates were validated using Sanger sequencing and ultra-deep targeted amplicon sequencing (depth: 71,375×), respectively. Subsequently, we performed a Gene Ontology analysis of the gDNVs and mDNVs to obtain biological insights. Lastly, we selected DNVs in known risk genes for psychiatric and neurodevelopmental disorders.
Results: We identified 62 gDNVs and 98 mDNVs. The Gene Ontology analysis of mDNVs implicated actin filament and actin cytoskeleton as candidate biological pathways. There were eight DNVs in known risk genes: splice region gDNVs in AKAP11 and CUL1; a frameshift gDNV in SHANK1; a missense gDNV in SRCAP; missense mDNVs in CTNNB1, GRIN2A, and TSC2; and a nonsense mDNV in ZFHX4.
Conclusion: Our results suggest the potential contributions of rare nonsynonymous gDNVs and mDNVs to the genetic etiology of schizophrenia. This is the first report of the mDNVs in schizophrenia trios, demonstrating their potential relevance to schizophrenia pathology.
Keywords: AKAP11; CUL1; GRIN2A; actin.
© 2024 The Author(s). Psychiatry and Clinical Neurosciences © 2024 Japanese Society of Psychiatry and Neurology.