This study aimed to evaluate the predictive value and clinical impact of a clinically implemented artificial neural network software model. The software detects intracranial hemorrhage (ICH) from head computed tomography (CT) scans and artificial intelligence (AI)-identified positive cases are then annotated in the work list for early radiologist evaluation. The index test was AI detection by the program Zebra Medical Vision-HealthICH+. Radiologist-confirmed ICH was the reference standard. The study compared whether time benefits from using the AI model led to faster escalation of patient care or surgery within the first 24 h. A total of 2,306 patients were evaluated by the software, and 288 AI-positive cases were included. The AI tool had a positive predictive value of 0.823. There was, however, no significant time reduction when comparing the patients who required escalation of care and those who did not. There was also no significant time reduction in those who required acute surgery compared with those who did not. Among the individual patients with reduced time delay, no cases with evident clinical benefit were identified. Although the clinically implemented AI-based decision support system showed adequate predictive value in identifying ICH, there was no significant clinical benefit for the patients in our setting. While AI-assisted detection of ICH shows great promise from a technical perspective, there remains a need to evaluate the clinical impact and perform external validation across different settings.
Keywords: AI model; CNS; ICH; decision analysis; outcome analysis.
© The Author(s) 2024. Published by Mary Ann Liebert, Inc.