Objectives: Highland barley (HB) consumption offers numerous health benefits; however, its impact on glycolipid metabolism abnormalities induced by a high-fat diet remains unclear. Consequently, this study aimed to investigate the therapeutic effects and underlying molecular mechanisms of HB in the context of obesity; Methods: Rats were fed either a high-fat diet (HFD) to induce obesity or a standard diet (SD) for six weeks. The rats in the HFD group were randomly assigned into five groups: HFD+HFD, HFD+SD, and low (30%), medium (45%), and high (60%) doses of the HB diet for an additional ten weeks. Analyses of serum lipid profiles, liver histology, transcriptomes, and untargeted metabolomes were conducted; Results: HB intake resulted in decreased weight gain, reduced feed intake, lower serum triglyceride and cholesterol levels, and diminished hepatic lipid accumulation. It also improved insulin and fasting blood glucose levels, and antioxidant capacity in the HFD-fed rats. Transcriptome analysis revealed that HB supplementation significantly suppressed the HFD-induced increase in the expression of Angptl8, Apof, CYP7A1, GDF15, Marveld1, and Nr0b2. Furthermore, HB supplementation reversed the HFD-induced decrease in Pex11a expression. Untargeted metabolome analysis indicated that HB primarily influenced the pentose phosphate pathway, the Warburg effect, and tryptophan metabolism. Additionally, integrated transcriptome and metabolome analyses demonstrated that the treatments affected the expression of genes associated with glycolipid metabolism, specifically ABCG8, CYP2C12, CYP2C24, CYP7A1, and IRS2. Western blotting confirmed that HB supplementation impacted the IRS2/PI3K/AKT signaling pathway; Conclusions: HB alleviates HFD-induced obesity and liver injury in an obese rat model possibly through the IRS2/PI3K/Akt signaling pathway.
Keywords: HFD; highland barley; liver injury; obesity.