Background: Pregnancy outcomes are influenced by maternal distress but the pathways underlying these effects are still unknown. Mitochondria, crucial for stress adaptation and energy production, may link psychosocial stress to its biological effects, especially during pregnancy when energy demands significantly increase. This study explores two mitochondrial markers-circulating cell-free mitochondrial DNA (cf-mtDNA) and Growth Differentiation Factor-15 (GDF15)-as potential mitochondrial health indicators linking maternal distress to pregnancy outcomes in two longitudinal studies from the USA and Turkey.
Methods: We analyzed biological, demographic, and psychological data from women in two pregnancy studies: EPI (N=187, USA, Mean age=29.6(SD=6.2) and BABIP (N=198, Turkey, Mean age=32.4(SD=4.0)). Data were collected at multiple time points during the perinatal period, including late 2nd and 3rd trimester, with EPI also including additional data at early 2nd trimester and 4-14 months postpartum. Prenatal maternal psychological distress was measured as perceived stress, anxiety, and depressive symptoms. Plasma cf-mtDNA and GDF15 levels were assessed using qPCR and ELISA, respectively. Statistical analyses included Wilcoxon signed-rank tests, Spearman correlations, and Mann-Whitney tests.
Results: Plasma cf-mtDNA levels did not change significantly during pregnancy in either study. Plasma GDF15 levels increased from early to late pregnancy in both studies and significantly decreased postpartum in EPI. Perinatal maternal distress in the late 2nd and 3rd trimesters was not associated with cf-mtDNA or GDF15 in either study. Metabolic distress, measured as higher pre-pregnancy BMI, was negatively correlated with GDF15 in the late 2nd trimester in EPI and showed a similar trend in BABIP. Similarly, higher maternal psychological distress in the early 2nd trimester were associated with lower cf-mtDNA and a trend for lower GDF15 in EPI. Finally, higher pre-pregnancy BMI and maternal distress in late pregnancy were linked to a smaller decline in GDF15 from late pregnancy to postpartum in EPI, suggesting an interaction between metabolic stress, prenatal distress and post-pregnancy physiological recovery.
Conclusions: This study identified distinct patterns of plasma cf-mtDNA and GDF15 levels during the perinatal period across studies from two countries, revealing unique associations between maternal characteristics, prenatal distress, and pregnancy outcomes, suggesting that maternal distress can interact with energy mobilization during pregnancy.