RAS-mutant leukaemia stem cells drive clinical resistance to venetoclax

Nature. 2024 Dec;636(8041):241-250. doi: 10.1038/s41586-024-08137-x. Epub 2024 Oct 30.

Abstract

Cancer driver mutations often show distinct temporal acquisition patterns, but the biological basis for this, if any, remains unknown. RAS mutations occur invariably late in the course of acute myeloid leukaemia, upon progression or relapsed/refractory disease1-6. Here, by using human leukaemogenesis models, we first show that RAS mutations are obligatory late events that need to succeed earlier cooperating mutations. We provide the mechanistic explanation for this in a requirement for mutant RAS to specifically transform committed progenitors of the myelomonocytic lineage (granulocyte-monocyte progenitors) harbouring previously acquired driver mutations, showing that advanced leukaemic clones can originate from a different cell type in the haematopoietic hierarchy than ancestral clones. Furthermore, we demonstrate that RAS-mutant leukaemia stem cells (LSCs) give rise to monocytic disease, as observed frequently in patients with poor responses to treatment with the BCL2 inhibitor venetoclax. We show that this is because RAS-mutant LSCs, in contrast to RAS-wild-type LSCs, have altered BCL2 family gene expression and are resistant to venetoclax, driving clinical resistance and relapse with monocytic features. Our findings demonstrate that a specific genetic driver shapes the non-genetic cellular hierarchy of acute myeloid leukaemia by imposing a specific LSC target cell restriction and critically affects therapeutic outcomes in patients.

MeSH terms

  • Animals
  • Antineoplastic Agents* / pharmacology
  • Antineoplastic Agents* / therapeutic use
  • Bridged Bicyclo Compounds, Heterocyclic* / pharmacology
  • Bridged Bicyclo Compounds, Heterocyclic* / therapeutic use
  • Cell Lineage / genetics
  • Clone Cells / metabolism
  • Clone Cells / pathology
  • Drug Resistance, Neoplasm* / drug effects
  • Drug Resistance, Neoplasm* / genetics
  • Female
  • Granulocytes
  • Humans
  • Leukemia, Myeloid, Acute* / drug therapy
  • Leukemia, Myeloid, Acute* / genetics
  • Leukemia, Myeloid, Acute* / pathology
  • Mice
  • Monocytes / drug effects
  • Monocytes / metabolism
  • Mutation*
  • Neoplastic Stem Cells / drug effects
  • Neoplastic Stem Cells / metabolism
  • Neoplastic Stem Cells / pathology
  • Proto-Oncogene Proteins c-bcl-2 / antagonists & inhibitors
  • Proto-Oncogene Proteins c-bcl-2 / genetics
  • Proto-Oncogene Proteins c-bcl-2 / metabolism
  • Recurrence
  • Stem Cells / metabolism
  • Stem Cells / pathology
  • Sulfonamides* / pharmacology
  • Sulfonamides* / therapeutic use
  • ras Proteins* / genetics
  • ras Proteins* / metabolism

Substances

  • Antineoplastic Agents
  • Bridged Bicyclo Compounds, Heterocyclic
  • Proto-Oncogene Proteins c-bcl-2
  • ras Proteins
  • Sulfonamides
  • venetoclax