Cells can deform their local niche in three dimensions via whole-cell movements such as spreading, migration or volume expansion. These behaviours, occurring over hours to days, influence long-term cell fates including differentiation. Here we report a whole-cell movement that occurs in sliding hydrogels at the minutes timescale, termed cell tumbling, characterized by three-dimensional cell dynamics and hydrogel deformation elicited by heightened seconds-to-minutes-scale cytoskeletal and nuclear activity. Studies inhibiting or promoting the cell tumbling of mesenchymal stem cells show that this behaviour enhances differentiation into chondrocytes. Further, it is associated with a decrease in global chromatin accessibility, which is required for enhanced differentiation. Cell tumbling also occurs during differentiation into other lineages and its differentiation-enhancing effects are validated in various hydrogel platforms. Our results establish that cell tumbling is an additional regulator of stem cell differentiation, mediated by rapid niche deformation and nuclear mechanotransduction.
© 2024. The Author(s), under exclusive licence to Springer Nature Limited.