In natural environments, micro/nanoplastics (MNP) inevitably coexist with various pollutants, making it essential to examine their combined toxicity and intergenerational effects on marine organisms. This study investigated the combined toxicity and intergenerational effects of exposure to triphenyltin (T), microplastics (M), nanoplastics (N), a combination of microplastics and triphenyltin (MT), and a combination of nanoplastics and triphenyltin (NT) on marine medaka. The results showed that all treatments had adverse and intergenerational effects on marine medaka. Regarding oxidative stress and energy metabolism, smaller sized plastic particles caused more significant damage to the organisms. However, MT inflicted greater gonadal system damage than NT, leading to imbalanced sex hormone levels. Additionally, T induced hyperactivity in fish, whereas MNP tended to induce behavioral depression. Notably, large plastic particles in the F0 generation had a more pronounced impact on depressive behaviors compared to smaller particles. These findings suggest that both individual and combined exposures to TPT and MNP can detrimentally affect marine medaka from the molecular to behavioral levels, posing risks to population sustainability. This study provided a robust theoretical foundation and deeper insights into the ecotoxicological impacts and risk assessments of coexisting pollutants.
Keywords: Micro-nano plastic; Molecular mechanism; Multigenerational effects; Physiological regulation; Triphenyltin.
Copyright © 2024 Elsevier B.V. All rights reserved.