Patterns of corticosterone exposure affect the subcellular localisation of mineralocorticoid and glucocorticoid receptor complexes and gene expression

Steroids. 2024 Oct 28:214:109524. doi: 10.1016/j.steroids.2024.109524. Online ahead of print.

Abstract

Mineralocorticoid (MR) and glucocorticoid receptors (GR) act as transcription factors and major mediators of glucocorticoid signalling, with pivotal roles in regulating the stress response and hormonal signalling, mood, cognition and memory. The MR and GR share many target genes, have a high degree of homology in their DNA binding (DBD) and ligand binding domain (LBD) but differ considerably in the N-terminal domain (NTD). Using Proximity Ligation Assay (PLA) we quantitatively assessed MR-GR complex subcellular localisation and transcriptional regulation in murine neuroblastoma (N2A) cells stimulated by constant or pulsatile corticosterone (CORT) patterns. We observe that continuous receptor activation by CORT caused localisation at the periphery of the cell nucleus. Truncation of the receptor Ligand Binding Domain (LBD) led to a stronger localisation of MR-GR complexes at the periphery of the cell nuclei. This was also observed for GR immunofluorescence (IF), while in cells expressing only MR or GR the mRNA response to pulsatile hormone treatment was substantially attenuated. However, there was no clearcut correlation between the spatial distribution of MR-GR complexes and the mRNA levels of target genes. Overall, our findings suggest that longer presence in the cell nucleus favors more peripheral nuclear localisation.