The optimal repair of rigid mineralized tissues, such as bone, in cases of fracture, surgical resection, or prosthetic placement, is a complex process often necessitating the use of bone graft materials. Autogenous bone from the patient is generally the gold standard in terms of outcomes but also has disadvantages, which have resulted in extensive research in the field of tissue engineering to develop better and more convenient alternatives. In the dental field, several initiatives have demonstrated that the dentin material derived from extracted teeth produces excellent results in terms of repairing bone defects and supporting dental implants. Dentin is acellular and thus, in contrast to autogenous bone, cannot provide osteoblasts or other cellular elements to the grafted region, but it does contain growth and differentiation factors, and has other properties that make it an impressive material for bone repair. In this review, the beneficial properties of dentin and the ways it interacts with the host bone are described in the context of bone graft materials. Autogenous tooth material has limitations, particularly in terms of the need for tooth extraction and the limited amount available, which currently restrict its use to particular dental procedures. The development of a xenograft dentin-derived material, which retains the properties of autogenous dentin, is described. Such a material could potentially enable the use of dentin-derived material more widely, particularly in orthopedic indications where its properties may be advantageous.
Keywords: ankylosis; bone grafts; dental; dentin; material; orthopedic; osteoinductive; porcine; tooth; xenogeneic.