Modeling Drug Responses and Evolutionary Dynamics using Patient-Derived Xenografts Reveals Precision Medicine Strategies for Triple Negative Breast Cancer

Cancer Res. 2024 Nov 8:10.1158/0008-5472.CAN-24-1703. doi: 10.1158/0008-5472.CAN-24-1703. Online ahead of print.

Abstract

The inter- and intra-tumor heterogeneity of triple negative breast cancers (TNBC), which is reflected in diverse drug responses, interplays with tumor evolution. Here, we developed a preclinical experimental and analytical framework using treatment-naive TNBC patient-derived tumor xenografts (PDTX) to test their predictive value in personalized cancer treatment approaches. Patients and their matched PDTX exhibited concordant drug responses to neoadjuvant therapy using two trial designs and dosing schedules. This platform enabled analysis of non-genetic mechanisms involved in relapse dynamics. Treatment resulted in permanent phenotypic changes with functional and therapeutic consequences. High throughput drug screening methods in ex vivo patient derived tumor xenograft cells (PDTCs) revealed patient-specific drug response changes dependent on first-line therapy. This was validated in vivo, as exemplified by a change in olaparib sensitivity in tumors previously treated with clinically relevant cycles of standard-of-care chemotherapy. In summary, PDTXs provide a robust tool to test patient drug responses and therapeutic regimens and to model evolutionary trajectories. However, high inter-model variability and permanent non-genomic transcriptional changes constrain their use for personalized cancer therapy. This work highlights important considerations associated with preclinical drug response modeling and potential uses of the platform to identify efficacious and preferential sequential therapeutic regimens.