Background: Pulmonary fibrosis is a challenging clinical problem with lung pathology featuring immune cell infiltrates, fibroblast expansion, and matrix deposition. Molecular analysis of diseased lungs and preclinical models have uncovered C-C chemokine receptor type 2 (CCR2)+ monocyte egress from the bone marrow into the lung, where they acquire profibrotic activities. Current drug treatment is focused on fibroblast activity. Alternatively, therapeutic targeting and monitoring CCR2+ cells may be an effective patient management strategy.
Methods: Inhibition of CCR2+ cells and, as a benchmark, the clinical antifibrotic agent, nintedanib, were used in mouse lung fibrosis models. Lungs were evaluated directly for CCR2+ cell infiltration and by non-invasive CCR2+ positron emission tomography imaging (CCR2-PET).
Findings: Lung CCR2+ cells were significantly elevated in the bleomycin model as determined by tissue evaluation and CCR2-PET imaging. A protective treatment protocol with an oral CCR2 inhibitor was compared to oral nintedanib. While we expected disparate effects on CCR2+ cells, each drug similarly decreased lung CCR2+ cells and fibrosis. Chemotaxis assays showed nintedanib indirectly inhibited C-C motif chemokine 2 (CCL2)-mediated migration of CCR2+ cells. Even delayed therapeutic administration of nintedanib in bleomycin and the silicosis progressive fibrosis models decreased the accumulation of CCR2+ lung cells. In these treatments early CCR2-PET imaging predicted the later development of fibrosis.
Interpretation: The inhibition of CCR2+ cell egress is likely a critical controller for stabilising lung fibrosis, as provided by nintedanib. Imaging with CCR2-PET may be useful to monitor nintedanib treatment responses, guide decision-making in the treatment of patients with progressive pulmonary fibrosis, and as a biomarker for drug development.
Funding: National Institutes of Health (NIH), R01HL131908 (SLB), R35HL145212 (YL), P41EB025815 (YL), K01DK133670 (DHK); Barnes Jewish Hospital Foundation (SLB).
Keywords: CCR2; Macrophages; Monocytes; Nintedanib; Positron-emission tomography; Pulmonary fibrosis.
Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved.