Chikungunya and Mayaro fevers are viral infectious diseases characterized by fever and arthralgia, for which there are currently no effective vaccines or treatments. The urgent need for novel antiviral agents against Chikungunya virus (CHIKV) and Mayaro virus (MAYV) has led to interest in plant-based compounds that can disrupt the viral replication cycle. Chiococca alba (L.) Hitchc., a Neotropical plant traditionally used by Yucatec Maya healers as an antipyretic and antirheumatic, may hold potential as a source of antiviral agents. This study aimed to evaluate the antiviral potential of C. alba methanolic extracts (CAH21 and CAH24) against CHIKV and MAYV through preliminary in vitro and in silico analyses. The cytotoxicity of two methanolic extracts from C. alba roots was assessed in Vero cells using the neutral red assay, and their viral activity was determined via plaque assay post-treatment. Given the observed antiviral effects, we used computational predictions to explore interactions between the multifunctional nsP2 proteases and secondary metabolites identified in C. alba extracts. The metabolites were identified using high-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS). Phytochemical analysis revealed the presence of flavonoids, coumarins, and phenolic acids in the C. alba extracts. In vitro assays demonstrated that both extracts inhibited over 70% of activity against CHIKV and MAYV at a concentration of 60 µg/mL. In silico predictions suggested that the flavonoids naringin and vitexin had the highest affinity for the nsP2 proteases of CHIKV and MAYV, indicating their potential as viral inhibitors. Our findings revealed that C. alba extract represents a promising source of novel antiviral compounds.
Keywords: Alphavirus; cainca plants; flavonoids; nsP2 protease; viral infections.