Manipulating the H2O2 Reactivity on Pristine Anatase TiO2 with Various Surface Features and Implications in Oxidation Reactions

J Phys Chem Lett. 2024 Nov 21;15(46):11620-11628. doi: 10.1021/acs.jpclett.4c02742. Epub 2024 Nov 12.

Abstract

Anatase TiO2 is commonly used as a catalyst/support in reactions involving H2O2, yet the understanding of interactions between common TiO2 surfaces and H2O2 remains limited. Herein, we synthesized well-defined TiO2 crystallites with (101), (001), and fluorine-modified (001) [F-(001)] surfaces to examine how surface features, including the arrangement of five-coordinated Ti (Ti5c) sites and the presence of fluorine, influence H2O2 activation. Our findings reveal that these surface features significantly affect the physiochemical properties of adsorbed H2O2. Specifically, fluorine on the F-(001) surface introduces an additional hydrogen bond to the Ti5c-peroxo species, altering the electronic structure of H2O2 compared to those with the (101) and (001) surfaces. Using cyclohexene as a probe substrate, we successfully distinguished the reactivities of the Ti5c-peroxo species. The activity of those on the F-(001) surface was significantly higher than the activity of those on the (001) surface, while the (101) surface showed negligible oxidation activity. These insights can guide the design of TiO2-based catalysts for H2O2-related reactions.