Dynamics and biodiversity of microbial community among seasons in Shanxi mature vinegar fermentation by semisolid-solid process

Microbiol Spectr. 2024 Nov 13;12(12):e0023124. doi: 10.1128/spectrum.00231-24. Online ahead of print.

Abstract

The dynamic succession and seasonal characteristics of microbiota throughout the Shanxi mature vinegar (SMV) fermentation by the semisolid-solid process were explored using high-throughput sequencing techniques. The results showed that the richness and diversity of fungi were higher than those of bacteria in a complete seasonal SMV fermentation cycle, and the microbial community was dominated by 11 taxa of bacteria and 16 taxa of fungi. In all four seasons, lactic acid bacteria and acetic acid bacteria were the dominant bacteria, while the dominant fungi varied. Saccharomyces and Pichia played an important role in spring. Aspergillus and Issatchenkia were enriched in the summer. Kazachstania was the dominant microorganism in autumn. While Mesenteroides and Meyerozyma were enriched in winter. Unweighted pair group method with arithmetic mean (UPGMA) cluster analysis demonstrated that seasonality had a more decisive impact on microbiota composition than the fermentation stage within a season, and the microbiota structure in summer was significantly different from that in the other three seasons. Combined with the highest operational taxonomic units (OTUs) percentage (37%) of summer fungi in the Venn diagrams, it is speculated that the specific fungi may be the root cause for the relatively low SMV quality in summer. This work provided critical insights into the dynamic succession of the microbial community in SMV fermentation from a seasonality view, and the results could enrich our understanding of the microbiota involved in SMV fermentation and guide process control.

Importance: Understanding the changes in microbial communities across different seasons is crucial for ensuring the quality of Shanxi mature vinegar (SMV) by the semisolid-solid process. In a complete seasonal cycle, the richness and diversity of fungi were higher than those of bacteria. The microbial community in summer fermentation was significantly different compared to the other three seasons. For example, the dominant microorganisms such as Acetobacter and Lactobacillus decreased in summer. Screening or modifying this group of bacteria to enhance their tolerance to high fermentation temperature is an approach to improve industrial SMV fermentation. Through co-occurrence network analysis, eight highly connected genera were identified, which may play important roles in ecosystem stability. These results also lay a theoretical foundation for the further development of multi-microbial co-fermentation. This work provides an understanding of SMV fermentation from a seasonal perspective and offers new guidance for the process control of grain vinegar brewing.

Keywords: Shanxi mature vinegar; UPGMA cluster analysis; co-occurrence networks; microbiota assembly; seasonal characteristics; semisolid-solid process.