Rapid downregulation of DICER is a hallmark of adipose tissue upon high-fat diet feeding

Mol Cell Endocrinol. 2025 Jan 1:595:112413. doi: 10.1016/j.mce.2024.112413. Epub 2024 Nov 12.

Abstract

Adipose tissue regulates whole-body energy balance and is crucial for metabolic health. With energy surplus, adipose tissue expands, which may lead to local areas of hypoxia and inflammation, and consequently impair whole-body insulin sensitivity. We report that DICER, a key enzyme for miRNA maturation, is significantly lower in abdominal subcutaneous white adipose tissue of men with obesity compared with men with a lean phenotype. Furthermore, DICER is profoundly downregulated in mouse adipose tissue and liver within the first week on a high-fat diet (HFD), and remains low after prolonged HFD feeding. Downregulation of DICER in mice occurs in both mature adipocytes and stromal vascular cells. Mechanistically, chemically induced hypoxia in vitro shows DICER degradation via interaction with hypoxia-inducible factor 1-α (HIF1α). Moreover, DICER and HIF1α interact in brown adipose tissue post-HFD which may signal for DICER degradation. Finally, RNA sequencing reveals a striking time-dependent downregulation of total miRNA content in mouse subcutaneous adipose tissue after HFD feeding. Collectively, HFD in mice reduces adipose tissue DICER, likely due to hypoxia-induced interaction with HIF1α during tissue expansion, and this significantly impacts miRNA content.

Keywords: DICER; HIF1α; High-fat diet; Human adipose tissue; Hypoxia; Mouse adipose tissue; miRNA.

MeSH terms

  • Adipocytes / metabolism
  • Adipose Tissue / metabolism
  • Adipose Tissue, Brown / metabolism
  • Animals
  • DEAD-box RNA Helicases* / genetics
  • DEAD-box RNA Helicases* / metabolism
  • Diet, High-Fat* / adverse effects
  • Down-Regulation* / genetics
  • Humans
  • Hypoxia-Inducible Factor 1, alpha Subunit* / genetics
  • Hypoxia-Inducible Factor 1, alpha Subunit* / metabolism
  • Male
  • Mice
  • Mice, Inbred C57BL*
  • MicroRNAs* / genetics
  • MicroRNAs* / metabolism
  • Obesity / genetics
  • Obesity / metabolism
  • Ribonuclease III* / genetics
  • Ribonuclease III* / metabolism

Substances

  • Ribonuclease III
  • Hypoxia-Inducible Factor 1, alpha Subunit
  • MicroRNAs
  • DEAD-box RNA Helicases
  • DICER1 protein, human
  • Dicer1 protein, mouse