Efficient separation of bioactive compounds from nature source, particularly that of astaxanthin (AXT), remains challenging due to their low content in complicated matrix and readily degradable structure. Herein, a modulator-induced defect engineering is presented on the stable zirconium-based metal-organic frameworks (Zr-MOFs) to optimize pore size and pore chemistry for the efficient separation and purification of AXT for the first time. High adsorption capacity of 26.21 mg g-1 is achieved on the best-performing defect Zr-MOF (d-UiO-67-4), superior over the other reported adsorbent for AXT. Meanwhile, d-UiO-67-4 exhibits the selective adsorption of AXT over other carotenoids analogues with similar structure and properties. This is attributed to the preferential non-covalent interactions between defect framework and AXT revealed by the spectroscopy analysis and density functional theory (DFT) calculations. High purity of AXT with 89.0% ± 2.3% extraction efficiency can be realized after the purification of AXT by d-UiO-67-4. The practical separation performance of d-UiO-67-4 for AXT extracted from Haematococcus pluvialis is demonstrated by fixed-bed column-based dynamic adsorption and desorption experiments. This work broadens the preparation methods for thermosensitive active substances and provided new research ideas for the controlled adsorption of functional food factors.
Keywords: astaxanthin; metal–organic frameworks; purification; separation.
© 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH.