Ribozymes are small catalytic RNA sequences capable of nucleotide-specific self-cleavage found widespread in nature. Ribozyme cleavage generates distinct 2',3'-phosphate and 5'-hydroxyl termini that resemble substrates for recently characterized RNA repair pathways in cells. We report that ribozyme cleavage of two separate mRNAs activated their scarless trans-ligation and translation into full-length protein in eukaryotic cells, a process that we named StitchR (for Stitch RNA). Optimization of StitchR activity in mammalian cells resulted in a ~900-fold increase in protein expression that approached levels observed for genes expressed from single vectors. We demonstrate that StitchR can be harnessed for effective dual adeno-associated virus gene therapies to correct muscular dystrophies by restoring large functional muscle proteins to endogenous levels in vivo.