Purpose: To characterize ocular motility disturbances through Microperimetry (MP) in patients with Multiple Sclerosis (MS) trying to detect those capable of influencing the disability to improve the accuracy of assessing visual impact in EDSS scale. MP results were compare with some structural parameters obtained by OCT.
Patients and methods: Cross-sectional analytical and correlational case-control study approved by Ethical Committee. A total of 82 eyes (41 patients) and 30 healthy eyes (15 subjects) were enrolled after informed consent. All participants underwent ophthalmological evaluation with MP and OCT. Variables included MS disease duration, Expanded Disability Status Scale (EDSS) score; in OCT: central macular thickness (CMT), ganglion cell-inner plexiform layer thickness (GCIPL), and peripapillary retinal nerve fiber layer thickness (pRNFL); and in MP: test duration, reaction time, average macular threshold (AT), and 4 fixation stability indexes (P1, P2, BCEA63, BCEA95).
Results: MS group showed a significant decrease in GCIPL (p < 0.001) and pRNFL thickness (p < 0.001) compared to the control group. Furthermore, patients demonstrated a longer examination (p < 0.001) and reaction (p < 0.001) times, reduced AT (p < 0.001), more unstable fixation indexes (P1 p <0.004, P2 p = 0.018, BCEA63 p = 0.005 and BCEA95 p = 0.007), measured by MP. In addition, patients with a history of ON (n=16) demonstrated longer examination times in MP (p = 0.049) compared to MS patients without ON, but they were not correlations with OCT measurements, EDSS score correlated with the CMT (p = 0.023, r = -0.25), MP duration (p = 0.043, r = 0.22), and fixation indexes (P1 p = 0.049, r = -0.22, BCEA63 p = 0.041, r = 0.23, BCEA95 p = 0.049, r = 0.22).
Conclusion: Our study emphasizes the complementary utility of MP and OCT in assessing MS patients. Additionally, it highlights that using MP for objective measurements of oculomotor dysfunction could improves accuracy in disability assessment on the EDSS scale.
Keywords: expanded disability status scale; fixation instability; neurodegenerative diseases; ocular movement anomalies; retinal sensitivity.
© 2024 Guantay et al.