Open scientific competitions have successfully driven biomedical advances but remain underutilized in aging research, where biological complexity and heterogeneity require methodological innovations. Here, we present the results from Phase I of the Biomarkers of Aging Challenge, an open competition designed to drive innovation in aging biomarker development and validation. The challenge leverages a unique DNA methylation dataset and aging outcomes from 500 individuals, aged 18 to 99. Participants are asked to develop novel models to predict chronological age, mortality, and multi-morbidity. Results from the chronological age prediction phase show important advances in biomarker accuracy and innovation compared to existing models. The winning models feature improved predictive power and employ advanced machine learning techniques, innovative data preprocessing, and the integration of biological knowledge. These approaches have led to the identification of novel age-associated methylation sites and patterns. This challenge establishes a paradigm for collaborative aging biomarker development, potentially accelerating the discovery of clinically relevant predictors of aging-related outcomes. This supports personalized medicine, clinical trial design, and the broader field of geroscience, paving the way for more targeted and effective longevity interventions.