Controlling Alzheimer's disease by deep brain stimulation based on a data-driven cortical network model

Cogn Neurodyn. 2024 Oct;18(5):3157-3180. doi: 10.1007/s11571-024-10148-3. Epub 2024 Jul 8.

Abstract

This work aims to explore the control effect of DBS on Alzheimer's disease (AD) from a neurocomputational perspective. Firstly, a data-driven cortical network model is constructed using the Diffusion Tensor Imaging data. Then, a typical electrophysiological feature of EEG slowing in AD is reproduced by reducing the synaptic connectivity parameters. The corresponding changes in kinetic behavior mainly include an oscillation decrease in the amplitude and frequency of the pyramidal neuron population. Subsequently, DBS current with specific parameters is introduced into three potential targets of the hippocampus, the nucleus accumbens and the olfactory tubercle, respectively. The results indicate that applying DBS to simulated mild AD patients induces an increase in relative alpha power, a decrease in relative theta power, and a significant rightward shift of the dominant frequency. This is consistent with the EEG reversal in pharmacological treatments for AD. Further, the optimal stimulation strategy of DBS is investigated through spectral and statistical analyses. Specifically, the pathological symptoms of AD could be alleviated by adjusting the critical parameters of DBS, and the control effect of DBS on various targets is that the hippocampus is superior to the olfactory tubercle and nucleus accumbens. Finally, using correlation analysis between the power increments and the nodal degrees, it is concluded that the control effect of DBS is related to the importance of the nodes in the brain network. This study provides a theoretical guidance for determining DBS targets and parameters, which may have a substantial impact on the development of DBS treatment for AD.

Keywords: Alzheimer’s disease; Data-driven model; Deep brain stimulation; Power spectrum analysis.