Development of flip-chip technology for the optical drive of superconducting circuits

Open Res Eur. 2024 Nov 11:4:97. doi: 10.12688/openreseurope.17481.2. eCollection 2024.

Abstract

We discuss the flip-chip mounting process of photodiodes and fiber sleeves on silicon substrates to meet the increasing demand for fabrication of highly integrated and hybrid quantum circuits for operation at cryogenic temperatures. To further increase the yield and success rate of the flip-chip procedure, the size of the gold stud bumps, and flip-chip parameters were optimized. Moreover, to connect optical fibers to the photodiodes in an optimal position, the fiber sleeves were aligned with specially fabricated alignment circles before applying thermocompression with the flip-chip machine. The mounted photodiodes were tested at both room temperature and cryogenic temperature, and we find that mechanical imperfections of the sleeve-ferrule combination limit the overall alignment accuracy. The experimental results show that our flip-chip process is very reliable and promising for various optical and electrical applications and, thus, paves the way for fabrication of hybrid chips, multi-chip modules and chip-on-chip solutions, which are operated at cryogenic temperatures.

Keywords: AC Josephson Voltage Standard; JAWS; cryo-electronics; flip chip technology; gold stud bumps; photodiode; superconducting quantum circuits.

Grants and funding

This work was partly funded by the EMPIR programme co-financed by the Participating States and from the European Union’s Horizon 2020 research and innovation programme (contract number 20FUN07 SuperQuant) and by the German Federal Ministry of Education and Research (contract number: 13N15934).