Toward the Application of Dual-Energy Computed Tomography with Virtual Non-Hydroxyapatite Color-Coded Maps to Identify Traumatic Fractures in Daily Emergency Settings

J Imaging. 2024 Oct 23;10(11):267. doi: 10.3390/jimaging10110267.

Abstract

To evaluate the advantages of dual-energy computed tomography (DECT) virtual non-hydroxyapatite color mapping (VNHAP) in combination with standard bone CT (BCT) in the identification of subtle or occult traumatic fractures referred to emergency and acceptance departments (DEAs). Forty patients (22 men; mean age 83 ± 23.7 y) with suspected traumatic fractures referred to our emergency department and examined with a fast kilovoltage-switching single-source spectral CT scan between January and October 2023 were retrospectively reviewed. The BCT and VNHAP images were blindly evaluated by two radiologists with >10 years and <2 years of experience in musculoskeletal imaging. Both techniques were evaluated in terms of sensitivity (SE), specificity (SP), positive and negative predictive values (PPVs and NPVs) and accuracy for fracture detection, as confirmed at a 3-month clinical-instrumental follow-up. Inter-observer agreement and examination times were also analyzed. Fractures were confirmed in 18/40 cases. The highest values of diagnostic performance for VNHAP images were obtained in terms of SP (90.9% and 95%) and PPV (87.5% and 92.8%) and for the less experienced operator. No statistically significant differences were observed between the diagnostic accuracy of the two readers in the evaluation of VNHAP images. Inter-observer agreement was moderate (κ = 0.536) for BCT and substantial (κ = 0.680) for VNHAP. Comparing the two operators, a significantly longer examination time for BCT and no significant difference for VNHAP were registered. Our preliminary experience may encourage the employment of VNHAP maps in combination with BCT images in emergency settings. Their use could be time-saving and valuable in terms of diagnostic performance, especially for less experienced operators.

Keywords: bone marrow edema; dual-energy computed tomography (DECT); emergency radiology; material decomposition; traumatic fractures.

Grants and funding

This research received no external funding.