Comparative lipidome and transcriptome provide novel insights into zero-valent iron nanoparticle-treated Fremyella diplosiphon

Sci Rep. 2024 Nov 26;14(1):29380. doi: 10.1038/s41598-024-79780-7.

Abstract

Understanding the intricate interplay between nanoparticle-mediated cyanobacterial interactions is pivotal in elucidating their impact on the transcriptome and lipidome. In the present study, total fatty acid methyl esters (FAMEs) in the wild-type (B481-WT) and transformant (B481-SD) Fremyella diplosiphon strains treated with nanoscale zero-valent iron nanoparticles (nZVIs) were characterized, and transcriptome changes analyzed. Comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry revealed a 20-25% higher percentage of FAMEs in nZVI-treated F. diplosiphon strain B481-SD compared to B481-WT. Accumulation of alkanes was significantly higher (> 1.4 times) in both strains treated with 25.6 mg L-1 nZVIs compared to the untreated control. In addition, we observed significantly higher levels of monounsaturated FAMEs (11%) in B481-WT in 3.2 (11.34%) and 25.6 mg L-1 (11.22%) nZVI-treated cells when compared to the untreated control (7%). Analysis of the F. diplosiphon transcriptome treated with 3.2 mg L-1 revealed a total of 1811 and 1651 genes that were differentially expressed in B481-SD and B481-WT respectively. While the expression of iron uptake and ion channel genes was downregulated, genes coding for photosynthesis, pigment, and antioxidant enzymes were significantly (p < 0.05) upregulated in B481-SD treated with 3.2 mg L-1 nZVIs compared to the untreated control. This study on essential FAMEs and regulation of genes in nZVI-treated F. diplosiphon strains provides a molecular framework for optimization of metabolic pathways in this model species.

Keywords: Cyanobacteria; Lipidome; Nanoparticles; Transcriptome.

Publication types

  • Comparative Study

MeSH terms

  • Cyanobacteria / genetics
  • Cyanobacteria / metabolism
  • Fatty Acids / metabolism
  • Flavobacteriaceae / genetics
  • Flavobacteriaceae / metabolism
  • Iron* / metabolism
  • Lipid Metabolism / genetics
  • Lipidomics*
  • Metal Nanoparticles* / chemistry
  • Transcriptome*

Substances

  • Iron
  • Fatty Acids