The management of wounds primarily revolves around pain relief, effective infection control and the promotion of tissue regeneration to prevent complications like chronic skin wounds. While polymeric bioactive films are innovative alternatives to conventional wound dressings, there exists a dearth of guidance regarding their quality control. This underscores the imperative need to establish precise critical quality attributes, a task undertaken within this study using an antibiotic-anesthetic film as a model. The aim was to establish the influence of critical composition and process parameters and optimize the formula. First, the quality target product profile was defined, and critical quality attributes were identified. Our material selection included ciprofloxacin hydrochloride (an antimicrobial), lidocaine hydrochloride (an anesthetic), as well as excipients, such as sodium alginate, sodium hyaluronate, carbomer and glycerol. The critical components were identified through a risk assessment matrix, and their influence on film composition was determined by experimental verification using Design-Expert® software. A full factorial design was employed to assess the effects of sodium hyaluronate, carbomer and glycerol (as independent variables) on transparency, homogeneity, folding capacity and handling. Following this, an optimized formulation was achieved and subjected to further characterization. These optimized antibiotic-anesthetic films exhibited uniform micro-distribution of components, ensuring dosage uniformity. Both ciprofloxacin hydrochloride and lidocaine hydrochloride displayed sustained release profiles, suggesting potential therapeutic benefits for skin wounds. Furthermore, the resistance and elongation properties were similar to those of human skin. Utilizing a QbD approach, we successfully developed an optimized antibiotic-anesthetic film that adhered to the essential critical quality attributes. This films exhibits potential utility as a wound dressing. The findings presented in this study establish a fundamental framework for delineating the critical quality attributes of dressing films and refining their formulation to optimize wound treatment.
Keywords: Design space; Film; Polyelectrolytes; Polymeric wound dressings; Quality by design; Quality control; Risk analysis.
© 2024 The Authors. Published by Elsevier Ltd.