Purpose: To assess the effect of different intensity standardisation techniques (ISTs) and ComBat batch sizes on radiomics survival model performance and stability in a heterogenous, multi-centre cohort of patients with glioblastoma (GBM).
Methods: Multi-centre pre-operative MRI acquired between 2014 and 2020 in patients with IDH-wildtype unifocal WHO grade 4 GBM were retrospectively evaluated. WhiteStripe (WS), Nyul histogram matching (HM), and Z-score (ZS) ISTs were applied before radiomic feature (RF) extraction. RFs were realigned using ComBat and minimum batch size (MBS) of 5, 10, or 15 patients. Cox proportional hazards models for overall survival (OS) prediction were produced using five different selection strategies and the impact of IST and MBS was evaluated using bootstrapping. Calibration, discrimination, relative explained variation, and model fit were assessed. Instability was evaluated using 95% confidence intervals (95% CIs), feature selection frequency and calibration curves across the bootstrap resamples.
Results: One hundred ninety-five patients were included. Median OS = 13 (95% CI: 12-14) months. Twelve to fourteen unique MRI protocols were used per MRI sequence. HM and WS produced the highest relative increase in model discrimination, explained variation and model fit but IST choice did not greatly impact on stability, nor calibration. Larger ComBat batches improved discrimination, model fit, and explained variation but higher MBS (reduced sample size) reduced stability (across all performance metrics) and reduced calibration accuracy.
Conclusion: Heterogenous, real-world GBM data poses a challenge to the reproducibility of radiomics. ComBat generally improved model performance as MBS increased but reduced stability and calibration. HM and WS tended to improve model performance.
Key points: Question ComBat harmonisation of RFs and intensity standardisation of MRI have not been thoroughly evaluated in multicentre, heterogeneous GBM data. Findings The addition of ComBat and ISTs can improve discrimination, relative model fit, and explained variance but degrades the calibration and stability of survival models. Clinical relevance Radiomics risk prediction models in real-world, multicentre contexts could be improved by ComBat and ISTs, however, this degrades calibration and prediction stability and this must be thoroughly investigated before patients can be accurately separated into different risk groups.
Keywords: Brain neoplasms; Diagnostic imaging; Glioblastoma; Prognosis; Radiomics.
© 2024. The Author(s).