In this study, one-pot multicomponent reactions of novel chromeno[2,3-c]pyrazole derivatives (1-14) were performed using an AlCl3 catalyst via cyclisation. Various spectral and chromatographic techniques were used to elucidate the structure of the synthesised derivatives (1-14). The synthesised compounds were then inspected for their antibacterial, antioxidant, and tyrosinase inhibition activities. An in silico screening approach was also employed to identify highly potent derivatives. Besides, we utilised density functional theory (DFT) with the B3LYP/6-31G+ (d, p) basis set to optimise the newly modified derivatives. This approach was used to calculate various properties, including electron density, electrostatic potential map, interaction strength, frontier molecular orbital energy, and reactivity characteristics. To examine the binding affinity, modes, and stability of the protein-drug complex, molecular docking with the 2Y9X protein structure were employed. The findings from DFT computations, along with physicochemical information and molecular docking binding affinity, showed promising results than standard and low active compound 1. The absorption, metabolism, and cytotoxic characteristics of all the novel derivatives were investigated in the ADMET prediction. Our findings could prove valuable in developing novel drugs for medicinal and pharmaceutical fields.
Keywords: Antibacterial activity; Antioxidant activity; Chromeno[2,3-c]pyrazole derivatives; Tyrosinase inhibitory activity.
© 2024. The Author(s), under exclusive licence to Springer Nature Switzerland AG.